Ohio State nav bar

Astronomy Colloquium

FIRE simulations from the Moreno Group
November 17, 2016
2:30PM - 3:30PM
1080 Physics Research Building

Date Range
Add to Calendar 2016-11-17 14:30:00 2016-11-17 15:30:00 Astronomy Colloquium Galaxy Mergers on FireJorge Moreno - Cal Poly Pomona & ITC-HarvardGalaxy mergers and interactions are responsible for generating bursts of star formation, for changing galactic morphology in dramatic ways, and for triggering single and dual active galactic nuclei. In this talk, I will unveil the very first results from a novel suite of high-resolution galaxy merger simulations, based on the “Feedback In Realistic Environments” (FIRE) model. This model treats energy and momentum-driven feedback from young stars and SN explosions explicitly, which acts directly on resolved star-forming clouds within the ISM. Moreover, this framework relies on a new meshless Lagrangian hydro code, GIZMO, which solves many problems associated with older solvers. Our first work focuses on the spatial localization of star formation. In particular, we confirm results from previous work: galaxy-galaxy interactions enhance nuclear star formation, and suppress it at large galacto-centric radii (Moreno et al. 2015). However, two major differences are found. First, star-formation enhancement and suppression are not as dramatic as in older models. Secondly, the interaction-induced nuclear starburst has a larger spatial extent. These differences are a reflection of the fact that, in our new models, non-axisymmetric gravitational torques are not as effective at driving fuel into the central regions as in older sub-grid based models. This suite of merger simulations is ideal for making predictions for, and interpreting results from, observations by new-generation integral field spectroscopic surveysCoffee and Donuts served at 2:00pm in 4054 McPherson Laboratory. 1080 Physics Research Building Department of Astronomy astronomy@osu.edu America/New_York public

Galaxy Mergers on Fire

Jorge Moreno - Cal Poly Pomona & ITC-Harvard

Galaxy mergers and interactions are responsible for generating bursts of star formation, for changing galactic morphology in dramatic ways, and for triggering single and dual active galactic nuclei. In this talk, I will unveil the very first results from a novel suite of high-resolution galaxy merger simulations, based on the “Feedback In Realistic Environments” (FIRE) model. This model treats energy and momentum-driven feedback from young stars and SN explosions explicitly, which acts directly on resolved star-forming clouds within the ISM. Moreover, this framework relies on a new meshless Lagrangian hydro code, GIZMO, which solves many problems associated with older solvers. Our first work focuses on the spatial localization of star formation. In particular, we confirm results from previous work: galaxy-galaxy interactions enhance nuclear star formation, and suppress it at large galacto-centric radii (Moreno et al. 2015). However, two major differences are found. First, star-formation enhancement and suppression are not as dramatic as in older models. Secondly, the interaction-induced nuclear starburst has a larger spatial extent. These differences are a reflection of the fact that, in our new models, non-axisymmetric gravitational torques are not as effective at driving fuel into the central regions as in older sub-grid based models. This suite of merger simulations is ideal for making predictions for, and interpreting results from, observations by new-generation integral field spectroscopic surveys

Coffee and Donuts served at 2:00pm in 4054 McPherson Laboratory.